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Learning feature constraints in a chaotic neural memory
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We consider a neural network memory model that has both nonchaotic and chaotic regimes. The chaotic
regime occurs for reduced neural connectivity. We show that it is possible to adapt the dynamics in the chaotic
regime, by reinforcement learning, to learn multiple constraints on feature subsets. This results in chaotic
pattern generation that is biased to generate the feature patterns that have received responses. Depending on the
connectivity, there can be additional memory pulling effects, due to the correlations between the constrained
neurons in the feature subsets and the other neurons.@S1063-651X~97!00901-X#

PACS number~s!: 87.10.1e, 05.45.1b
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I. INTRODUCTION

Investigating the adaptability of chaotic systems is imp
tant from the point of view of understanding behavior
natural adaptive systems, and also relevant to enginee
highly adaptive multifunctional systems@1–6#. A number of
studies have already been made on adaptation in chaotic
vices and networks. In previous works, we have dem
strated adaptive behavior in a particular type of neural n
work model that has both nonchaotic and chaotic param
regimes. In the nonchaotic regime, the network functions
a conventional associative memory@13#. In the chaotic re-
gime, there are itinerant orbits that visit nearly all t
memory patterns, and so can be used to search among
@7#. For example, we have shown such a network can be u
to search interactively for a satisfactory memory recall, wh
the only input to the system is in the form of scalar r
sponses, by an external environment or operator, to patt
generated by the network@7,8#. There we used adaptive b
furcation dynamics@7–12# in which the external response, o
reaction signal, is fed back to a system parameter, spe
cally the connectivity parameter, to drive the system ab
or below the onset of chaos depending on whether the
sponse was ‘‘bad’’ or ‘‘good.’’ There we emphasized that
can be functionally significant for a network to have~at
least! two regimes of behavior, a stable associative regi
and an itinerant chaotic regime, and switch between the
regimes.

In this paper we show how the chaotic state itself, i
chaotic attractor, can be adapted by reinforcement learn
We discuss how this is useful in the context of search-acc
of memory.

II. RECURRENT NEURAL NETWORK MODEL

We consider a neural network model described by
following set of equations:

si~ t11!5sgnS (
j

e r ; i j Ti j sj~ t !2u i D , ~1!
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where each neuron is represented by discrete varia
si561, Ti j is the synaptic connection matrix, andu i are
threshold values.e r is a matrix of binary activity values
e r ; i j51 or 0 with( je r ; i j5r , wherer (0<r<N) is the con-
nection number or fan-in: the number of neurons each n
ron is connected to. The synaptic connection matrix is
fined as

T5 (
m51

L

(
l51

M

jWm
l11

^ jWm
l , ~2!

wherejWm
M115jWm

1 andL andM are, respectively, the numbe

of cycles and the period of each cycle.$jW% is a set of memory
patterns. We assume that the total number of pattern
much less than the numbers of neurons,LM!N, and that the
memory patterns typically have small overlap, i.e., sm

value ofmmlm8l85jWm
l
•jWm8

l8 .
If connectivity r is large,r.N, the network functions as

a conventional associative memory. IfsW(t) is one of the
memory patterns,jWm

l say, thensW(t11) will be the next

memory pattern in the cycle,jWm
l11 If sW(t) is near one of the

memory patternsjWm
l , then it will be in the basin ofjWm

l and

the sequencesW(t1kM)(k51,2,3, . . . ) generated by the
M -step map will converge to that memory pattern.@More
specifically, for each memory patternjWm

l , there is a set of

statesBml , called memory basins, such that ifsW(t) is in
Bml thensW(t1kM)(k51,2,3, . . . ) will converge tojWm

l .#
If connectivity r is reduced sufficiently, the memory pa

terns become unstable andsW(t) chaotically wanders around
in pattern space. Typically, the wanderingsW(t) repeatedly
visits all the regions that are memory basins at large conn
tivity values.

III. ADAPTATION BY REINFORCEMENT LEARNING
OF THRESHOLDS

Now as our adaptation problem, we consider the probl
of adaptation of the output when we assume that the o
input to the systems are a few scalar signalsE(t) that repre-
826 © 1997 The American Physical Society



e
e

a
rr

in

rg
d

ic
uch
an be
the
uce

he
the
e

n-
eu-
on-

u

rre
s.
r-
o

bu

es
d
o

55 827LEARNING FEATURE CONSTRAINTS IN A CHAOTIC . . .
sent external responses to the output patternssW(t). To be
specific, we consider a response to indicate the presenc~or
absence! of a specific feature in the output. A feature is d
fined as the similarity of a subset of neurons~such as a stripe
in a two-dimensional pattern! with a target pattern.~In the
context of memory it is of particular interest to consider,
we do in the following, the case where target features co
spond to features in memories.!

Feature, or feature-match, value of statesW(t) is defined as

Ca~ t !5
1

Nf
(
iPGa

si~ t !v i
a . ~3!

Here, va is a target feature pattern andGa is the feature
subset, the subset ofNf neurons whose outputs are used
the definition of feature.Ca(t) becomes11 if the feature
subset in the current output is identical with the search ta
and 0 if orthogonal. The external response is then assume
be

E5H„~12d!2C…, ~4!

whereH is a unit step function

FIG. 1. Feature distributions before learning. A feature distrib
tion is the histogram of values of the overlap~inner product! be-
tween the state of the neurons in a feature subset and the co
sponding target patterns, obtained from a chaotic time serie
Connectivityr510. The two distributions in the figure are for ta
get features corresponding to stripes in the 11th and 19th mem
patterns.

FIG. 2. Feature distributions after learning. The same distri
tions as in Fig. 1, obtained after learning.
-

s
e-

et
to

H~x!5H 1 if x>0

0 otherwise,
~5!

and d>0 is a tolerance parameter. Specific values ofd.0
are given in simulations shown later.

We will show how the itinerant behavior in the chaot
regime can be adapted by reinforcement learning using s
external responses, i.e., we show that these responses c
used to adaptively constrain the chaos to concentrate on
subspace of patterns with the target features. We introd
the following learning rule,

u i~ t11!5u i~ t !2Dsi~ t ! ~ iPGa! if E50, ~6!

whereD.0 is a reinforcement constant. This modifies t
threshold value of a neuron in the feature subset when
response is good, i.e.,E50, making it easier to regenerat
the current neuron state.

Intuitively, adjusting thresholds is like adding external i
put in the sense that it biases or constrains the firing of n
rons in the feature subset. If the number of neurons c

-

-

ry

-

FIG. 3. Single-memory overlap distributions atr510 before
learning. A memory overlap distribution is the histogram of valu
of the overlap~inner product! betweenthe state of the neurons an
a memory pattern, obtained from a chaotic time series. The tw
distributions in the figure are for the 11th~solid line! and 19th
~dashed line! memory patterns.

FIG. 4. Single-memory overlap distributions atr510 after
learning. The same distributions as in Fig. 3@for the 11th~solid
line! and 19th~dashed line! memory patterns#, obtained after learn-
ing.
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828 55SHIGETOSHI NARA AND PETER DAVIS
strained, i.e., the number of neurons in the feature subse
small compared to the total number of neurons, then
stability of memory at full connectivity will not be affecte
by the modification of the neurons in the feature set. Also
the number of neurons constrained is small compared to
connectivity, then the constraining is not expected to ‘‘kil
the chaos at the reduced connectivity. So it is easy to im
ine that it is possible to have arbitrarily constrained chaos
reduced connectivity and the same stable memories at
connectivity.

However, it is not so clear that we can achieve arbitra
constrained chaos by reinforcement learning. It is easy to
that the one-shot ‘‘obsessive’’ case of largeD will work so
long as the chaotic itinerance visits a pattern that gets a g
responseE50. However, what about the more general ca
when more than one pattern gets a good response~e.g., mul-
tiple different feature subset patterns in a neighborhood n
the target feature pattern would get equivalent response
toleranced is nonzero! and we want some averaging mech
nism so the chaotic attractor shifts more gradually? Are
chaotic dynamics sufficiently robust and flexible to allo
this type of adaptation?

One significant difference between the dynamics resul
from direct input bias or threshold settings, and that result
from reinforcement learning, is that adjusting thresholds w
reinforcement learning may result in nonuniform biases
more than one pattern receives reinforcement, the distr
tion of thresholds depending on the detailed history of
chaotic itinerance during the learning process.

FIG. 5. ~a! Single-memory overlap distributions atr520 chaos
before learning and~b! after learning, for the 11th~solid line! and
19th ~dashed line! memory patterns.
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In general, in stochastic~not necessarily chaotic! adapta-
tion and reinforcement learning systems@14#, it is expected
that the choice ofd andD and the balance between them a
significant to adaptation performance. To test the feasibi
of the idea, we did some numerical experiments. We loo
at the effect on statistical measures characteristic of sin
typical chaotic orbits, namely, the histogram of feature v
ues, and the histogram of values of overlap with a particu
memory, the ‘‘single-memory overlap.’’ We performed th
experiments at connectivity values such that before the le
ing, both the single-memory overlap and feature overlap d
tributions resembled that expected from random pattern g
eration.~Though other measures, such as the projection
memory basins, may indicate that it is not uniform rando
pattern generation.!

Our main observations are as follows. It is indeed poss
to do ~gradual! adaptation, so that after a time the featu
value distribution becomes centered on ‘‘one.’’ The sing
memory overlap distribution may have suffered a shift, a
result of the constrained firing and dynamical correlatio
between neurons. This can be done without affecting
stability ~apart from the details of basin boundaries! of the
memories at full connectivity.

Also, we found that it is also possible to do adaptation
the more general case whenmultiple constraints are applied
by providing responses to multiple feature sets. However
the case of adaptation to multiple responses, whether le
ing is done sequentially or simultaneously can have sign
cant effects. We will now illustrate these points with a sp
cific numerical example.

FIG. 6. ~a! Single-memory overlap distributions atr530 chaos
before learning and~b! after learning, for the 11th~solid line! and
19th ~dashed line! memory patterns.
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55 829LEARNING FEATURE CONSTRAINTS IN A CHAOTIC . . .
IV. DEMONSTRATION OF LEARNING MULTIPLE
CONSTRAINTS

In our numerical example, we choose two separate fea
subsets, each corresponding to a single stripe in aAN3AN
pixel pattern, whereAN!N. This type of feature definition
is relevant, for example, to searching for face patterns wi
few specific facial features among an ensemble of face p
tographs. The dimension of the feature subsetsNf5AN is
much smaller than the dimension of the full pattern, which
the total number of neuronsN. As target features, we choos
a single-stripe pattern from one memory, and another st
pattern from another memory. The total number of mem
ries, a set of random patterns, isLM;AN!N.

The figures show the results forN5400, LM530, and
Nf520. The memories with the~different! target features are
memories number 11 and 19. The effect of learning is sho
in Figs. 1 and 2, showing the statistics of feature subset
tern generation before~Fig. 1! and after~Fig. 2! learning, in
the case where the connectivity parameterr510. Figures 3
and 4 show the corresponding single-memory overlap dis
butions. The values of the learning parameters used w
D50.3 andd50.2. The dependence of learning on the
learning parameters was not sensitive.

After learning, the network tends to generate patterns
which one feature stripe is almost the same as the co
sponding stripe in the 11th memory and another feat
stripe is similar to the corresponding stripe in the 19
memory, while the otherN22Nf(5360) neurons not in the
feature subsets continue to fluctuate wildly. The sing

FIG. 7. ~a! Single-memory overlap distributions atr540 chaos
before learning and~b! after learning, for the 11th~solid line! and
19th ~dashed line! memory patterns.
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memory overlap distribution is still Gaussian but the pe
position has shifted;0.05. This is plausible because th
dynamics has been constrained to haveNf520 bits in com-
mon with each of the two memories~20/4005 0.05!. This
amount of shift would be expected also from a random p
tern generation in which there was no dynamical correlat
between neurons and the remainingN22Nf fluctuated inde-
pendently.

The dynamical correlations between neurons becomes
parent when we increase connectivity. Before learning,
instance, chaotic dynamics of connectivityr520, 30, 40, and
50 all have similar Gaussian-shaped single-memory ove
distributions, as shown in Figs. 5~a!, 6~a!, 7~a!, and 8~a!.
However, after learning, though the learning was done at
same connectivityr510, the distributions differ, as shown i
Figs. 5~b!, 6~b!, 7~b!, and 8~b!. Note that the shifts of each
distribution are now larger than 0.05, which indicate th
memory dynamics have moved closer to the 11th and 1
memories than would be expected from just clamping of
feature subset. The more we increase connectivity, the st
ger the memory-pulling effect, and the more the memo
overlap distribution is deformed from that before learning

Next, we comment on the learning schedule. Gener
speaking, since we have two constraints, there are three w
of learning, namely,~i! learn the 11th memory feature firs
and then the 19th memory feature, or~ii ! learn the 19th
memory feature first, and then the 11th memory feature
~iii ! learn both features simultaneously. The results prese
here correspond to the third case. The other cases did

FIG. 8. ~a! Single-memory overlap distributions atr550 chaos
before learning and~b! after learning, for the 11th~solid line! and
19th ~dashed line! memory patterns.
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830 55SHIGETOSHI NARA AND PETER DAVIS
seem to work as well, although we did not optimize learn
by a thorough survey of parameters. However, in genera
can be expected that the tendency to shift toward, or
pulled by, the memory with the target feature means t
depending on the relative position of the memories in patt
space, it may become more difficult to learn one feature a
another.

Another specific example of where adaptation was l
successful, was for two feature subsets with 40 neurons e
all other parameters being equal. In this case, the chaos h
much stronger tendency to localize during adaptation, kill
the fluctuation dynamics needed to drive the progressive
aptation.

V. DISCUSSION

We have shown that adaptation of chaos by reinforcem
learning is possible. That is, the chaotic dynamics give
suitable sampling of the pattern space, so that target feat
can be found and moreover there is effective constraining
the chaos to the subspace of patterns with the target feat

It is not easy to give precise rules for what combination
the key parameters, such as number of neurons and me
ries, connectivity, feature subset size, tolerance, reinfo
ment constant, and adaptation, will be successful. But th
not a problem only of chaotic systems. The problem of h
to optimize and maintain variance is a common diffic
problem for any system using stochastic search methods
adaptation. However, it is significant to have specific e
amples that show how adaptation is possible.

An interesting issue in the context of constraining cha
in a network which at full connectivity has a set of mem
ries, is the effect on the chaos of the memories. This is s
here in a tendency to shift toward the memories contain
the target features observed at larger connectivities. Tha
for the distribution to shift further than would be expect
-
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from just fixing the states of the subset of neurons relevan
the feature. In the case of multiple constraints there can b
simultaneous shift toward multiple memories. It is expec
that if similar operations were done for two close memor
~for example, in a hierarchical memory such as is poss
with pseudoinverse embedding!, the result would look like a
constrained ‘‘synthesis’’ or dynamic montage of the
memories. This implies interesting possibilities for intera
tive synthesis of memories.

Finally, we comment on the implications for memo
search by adaptive bifurcation. In memory search by ad
tive bifurcation@7,8#, a system parameter is driven by exte
nal responses: for example, the connectivity parameterr can
be driven as

r5N@12~12N0 /N!E# ~7!

~where r5N0 is in the chaotic regime!, so that a memory
pattern receiving a good responseE50 will be stable, but
memories or other states corresponding to reactionsE51
will be unstable and result in wandering in memory spa
This allows the search among memories, in which the sea
time depends on the localization of the chaos on the ne
borhoods of memories receiving good responses. The re
of this paper show that with additional feedback to t
thresholds of the specific neurons in the feature subsets
network can learn from earlier searches to reduce search
in later searches by constraining the chaos to the subspa
patterns with the target features.
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