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Learning feature constraints in a chaotic neural memory
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We consider a neural network memory model that has both nonchaotic and chaotic regimes. The chaotic
regime occurs for reduced neural connectivity. We show that it is possible to adapt the dynamics in the chaotic
regime, by reinforcement learning, to learn multiple constraints on feature subsets. This results in chaotic
pattern generation that is biased to generate the feature patterns that have received responses. Depending on the
connectivity, there can be additional memory pulling effects, due to the correlations between the constrained
neurons in the feature subsets and the other neuf8a863-651X97)00901-X]

PACS numbd(s): 87.10+¢e, 05.45+b

[. INTRODUCTION where each neuron is represented by discrete variables
si==*1, T;; is the synaptic connection matrix, arél are
Investigating the adaptability of chaotic systems is impor-threshold valuese, is a matrix of binary activity values
tant from the point of view of understanding behavior of €.;;=1 or O withZje, ;;=r, wherer (0<r=<N) is the con-
natural adaptive systems, and also relevant to engineeringection number or fan-in: the number of neurons each neu-
highly adaptive multifunctional systemi$—6]. A number of  ron is connected to. The synaptic connection matrix is de-
studies have already been made on adaptation in chaotic dftred as
vices and networks. In previous works, we have demon-
. . . . L M
strated adaptive behavior in a particular type of neural net- RN
work model that has both nonchaotic and chaotic parameter T:;:‘fl >\§=:1 Eu ®&y, @
regimes. In the nonchaotic regime, the network functions as
a conventional associative memdr/3]. In the chaotic re-

gime, there are itinerant orbits that visit nearly all the IM dih iod of h > t of
memory patterns, and so can be used to search among the%CyC es and the period of each cyclé; is a set of memory

[7]. For example, we have shown such a network can be usdtfttemns We assume that the total number of patterns is

to search interactively for a satisfactory memory recall, Wher{'nuch less than the nu_mbers of neurdnis| <N, and t_hat the
the only input to the system is in the form of scalar re-MeMOrY patterns typically have small overlap, i.e., small
sponses, by an external environment or operator, to patteriyslue Ofm,m,yw=§,ﬁ~ 52, .

generated by the netwofk,8]. There we used adaptive bi- If connectivityr is large,r=N, the network functions as
furcation dynamic$7—-12] in which the external response, or a conventional associative memory. dft) is one of the
reaction signal, is _fed back to a system parameter, Spec'flhemory patterns2* say, thens(t+1) will be the next
cally the connectivity parameter, to drive the system above K Sl e 2o

or below the onset of chaos depending on whether the rdN€Mory pattern in the cycle,, " If s(t) is near one of the
sponse was “bad” or “good.” There we emphasized that it memory patterng), , then it will be in the basin of), and
can be functionally significant for a network to havat the sequence§(t+ kM)(k=1,2,3...) generated by the

leas}) two regimes of behavior, a stable associative regimav-step map will converge to that memory pattefiore
and an itinerant chaotic regime, and switch between the twgpecifically for each memory patteéjl there is a set of

regimes. B led basi h that Sft) is |
In this paper we show how the chaotic state itself, i'e',states w,» called memory basins, such thatst) is in

chaotic attractor, can be adapted by reinforcement learning®., thens(t+kM)(k=1,2,3 . ..) will converge toé), ]

We discuss how this is useful in the context of search-access If connectivityr is reduced sufficiently, the memory pat-

of memory. terns become unstable a§(i) chaotically wanders around
in pattern space. Typically, the Wanderiﬁgt) repeatedly

visits all the regions that are memory basins at large connec-
II. RECURRENT NEURAL NETWORK MODEL tivity values.

whereé)! *'= £} andL andM are, respectively, the number

We consider a neural network model described by the

OF THRESHOLDS

Now as our adaptation problem, we consider the problem
s(t+1)=s TS (D) — 6], 1 of adaptation of the output when we assume that the only
() gr( 2 i TS0~ 6 @ input to the systems are a few scalar sigri&(s) that repre-
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_ FI_G. 1. Feature distributions before Iearning. A feature distribu- FIG. 3. Single-memory overlap distributions &t 10 before
tion is the histogram of values _Of the overlépner product be- learning. A memory overlap distribution is the histogram of values
tweethe state of the neurons n a feature SUbS?t a_nd the COIMELt the overlap(inner product betweerthe state of the neurons and
sponding target patternsobtained from a chaotic time series. a memory patternobtained from a chaotic time series. The two
Connectivityr =10. The two distributions in the figure are for tar- distributions in the figure are for the 11tsolid line) and 19th
get features corresponding to stripes in the 11th and 19th memo%ashed ling memory patterns.
patterns.

- 1 if x=0
sent external responses to the output pattexmhy. To be H(x)= . (5)
specific, we consider a response to indicate the pres@mce 0 otherwise,
absencgof a specific feature in the output. A feature is de- i B
fined as the similarity of a subset of neurgaach as a stripe @nd 6=0 is a tolerance parameter. Specific valuesyof0
in a two-dimensional patteynwith a target pattern(in the ~ are given in simulations shown later. .
context of memory it is of particular interest to consider, as We Wwill show how the itinerant behavior in the chaotic

we do in the following, the case where target features correl€gime can be adapted by reinforcement learning using such
spond to features in memorigs. external responses, i.e., we show that these responses can be

Feature, or feature-match, value of st&(® is defined as  Used to adaptively constrain the chaos to concentrate on the
subspace of patterns with the target features. We introduce

1 the following learning rule,
Ca)=5 2 s(bvf. (3
f Gy 0.(t+1)=06,(t)—As(t) (ieG,) if E=0, (6)
g'uebr:’e;) tr:z :U?Srgf g?igﬂfoﬁstﬁggsi'?atgiéhzr;ei?erz inwhereA>0 is a reinforcement constant. This modifies the
the de%inition of featureC,(t) becomes+1 if the feature threshold yalue of a neuron in Fhe _featur_e subset when the
subset in the current output is identical with the search targ [esponse is good, i.e5=0, making it easier to regenerate
and 0 if orthogonal. The external response is then assumed ge C“Tr.e”t heuron etate. L . .
be Ir_1tumvely, adjustlng th_resholds is like eddmg ex_ternal in-
put in the sense that it biases or constrains the firing of neu-
rons in the feature subset. If the number of neurons con-

E=H(1-6)-0), 4
whereH is a unit step function S ' ' ' —
)
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FIG. 4. Single-memory overlap distributions at10 after
learning. The same distributions as in Fig[f8r the 11th(solid

FIG. 2. Feature distributions after learning. The same distribudine) and 19th(dashed linememory patternl obtained after learn-
tions as in Fig. 1, obtained after learning. ing.
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FIG. 5. () Single-memory overlap distributions et 20 chaos FIG. 6. (a) Single-memory overlap distributions &t 30 chaos
before learning andb) after learning, for the 11tksolid line) and ~ before learning andb) after learning, for the 11tksolid line) and
19th (dashed lingmemory patterns. 19th (dashed ling memory patterns.

In general, in stochastihot necessarily chaoli@dapta-
strained, i.e., the number of neurons in the feature subset, ifon and reinforcement learning systefist], it is expected
small compared to the total number of neurons, then thehat the choice of andA and the balance between them are
stability of memory at full connectivity will not be affected significant to adaptation performance. To test the feasibility
by the modification of the neurons in the feature set. Also, ifof the idea, we did some numerical experiments. We looked
the number of neurons constrained is small compared to that the effect on statistical measures characteristic of single
connectivity, then the constraining is not expected to “kill” typical chaotic orbits, namely, the histogram of feature val-
the chaos at the reduced connectivity. So it is easy to imagies, and the histogram of values of overlap with a particular
ine that it is possible to have arbitrarily constrained chaos fomemory, the “single-memory overlap.” We performed the
reduced connectivity and the same stable memories at fuxperiments at connectivity values such that before the learn-
connectivity. ing, both the single-memory overlap and feature overlap dis-

However, it is not so clear that we can achieve arbitrarilytributions resembled that expected from random pattern gen-
constrained chaos by reinforcement learning. It is easy to segration. (Though other measures, such as the projection on
that the one-shot “obsessive” case of lardyewill work so memory basins, may indicate that it is not uniform random
long as the chaotic itinerance visits a pattern that gets a gogghattern generatioh.
responsée=0. However, what about the more general case Our main observations are as follows. It is indeed possible
when more than one pattern gets a good resp@age mul-  to do (gradua) adaptation, so that after a time the feature
tiple different feature subset patterns in a neighborhood nearalue distribution becomes centered on “one.” The single-
the target feature pattern would get equivalent responses iiemory overlap distribution may have suffered a shift, as a
tolerances is nonzerd and we want some averaging mecha-result of the constrained firing and dynamical correlations
nism so the chaotic attractor shifts more gradually? Are thévetween neurons. This can be done without affecting the
chaotic dynamics sufficiently robust and flexible to allow stability (apart from the details of basin boundajies$ the
this type of adaptation? memories at full connectivity.

One significant difference between the dynamics resulting Also, we found that it is also possible to do adaptation in
from direct input bias or threshold settings, and that resultinghe more general case wherultiple constraints are applied
from reinforcement learning, is that adjusting thresholds withby providing responses to multiple feature sets. However, in
reinforcement learning may result in nonuniform biases ifthe case of adaptation to multiple responses, whether learn-
more than one pattern receives reinforcement, the distribling is done sequentially or simultaneously can have signifi-
tion of thresholds depending on the detailed history of thecant effects. We will now illustrate these points with a spe-
chaotic itinerance during the learning process. cific numerical example.
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FIG. 7. (a) Single-memory overlap distributions et 40 chaos FIG. 8. (a) Single-memory overlap distributions &t 50 chaos
before learning andb) after learning, for the 11tksolid line) and  before learning andb) after learning, for the 11tksolid line) and
19th (dashed lingmemory patterns. 19th (dashed ling memory patterns.

IV. DEMONSTRATION OF LEARNING MULTIPLE
CONSTRAINTS memory overlap distribution is still Gaussian but the peak

i position has shifted~0.05. This is plausible because the
In our numerical example, we choose two separate featur&ynamics has been constrained to hae= 20 bits in com-

subsets, each corresponding to a single stripe {N& VN mon with each of the two memorig¢g0/400= 0.05. This

pixel pattern, where/N<N. This type of feature definition amount of shift would be expected also from a random pat-
is relevant, for example, to searching for face patterns with gern generation in which there was no dynamical correlation
few specific facial features among an ensemble of face phgsetween neurons and the remainMg- 2N fluctuated inde-
tographs. The dimension of the feature subdéts N is pendently.

much smaller than the dimension of the full pattern, whichis The dynamical correlations between neurons becomes ap-
the total number of neuron¥. As target features, we choose parent when we increase connectivity. Before learning, for
a single-stripe pattern from one memory, and another stripghstance, chaotic dynamics of connectivity 20, 30, 40, and
pattern from another memory. The total number of memo50 all have similar Gaussian-shaped single-memory overlap
ries, a set of random patterns,Lis1 ~ /N<N. distributions, as shown in Figs.(@, 6(a), 7(a), and &a).

The figures show the results fdéi=400, LM=30, and However, after learning, though the learning was done at the
N;=20. The memories with th@liffereny target features are same connectivity= 10, the distributions differ, as shown in
memories number 11 and 19. The effect of learning is showrFigs. 5b), 6(b), 7(b), and &b). Note that the shifts of each
in Figs. 1 and 2, showing the statistics of feature subset patistribution are now larger than 0.05, which indicate that
tern generation befor@ig. 1) and after(Fig. 2) learning, in  memory dynamics have moved closer to the 11th and 19th
the case where the connectivity parameterl0. Figures 3 memories than would be expected from just clamping of the
and 4 show the corresponding single-memory overlap distrifeature subset. The more we increase connectivity, the stron-
butions. The values of the learning parameters used werger the memory-pulling effect, and the more the memory
A=0.3 and6=0.2. The dependence of learning on theseoverlap distribution is deformed from that before learning.
learning parameters was not sensitive. Next, we comment on the learning schedule. Generally

After learning, the network tends to generate patterns irspeaking, since we have two constraints, there are three ways
which one feature stripe is almost the same as the corresf learning, namely(i) learn the 11th memory feature first,
sponding stripe in the 11th memory and another featurand then the 19th memory feature, @r) learn the 19th
stripe is similar to the corresponding stripe in the 19thmemory feature first, and then the 11th memory feature, or
memory, while the otheN—2N;(=360) neurons not in the (iii) learn both features simultaneously. The results presented
feature subsets continue to fluctuate wildly. The single-here correspond to the third case. The other cases did not
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seem to work as well, although we did not optimize learningfrom just fixing the states of the subset of neurons relevant to
by a thorough survey of parameters. However, in general ithe feature. In the case of multiple constraints there can be a
can be expected that the tendency to shift toward, or bsimultaneous shift toward multiple memories. It is expected
pulled by, the memory with the target feature means thathat if similar operations were done for two close memories
depending on the relative position of the memories in patterrifor example, in a hierarchical memory such as is possible
space, it may become more difficult to learn one feature aftewith pseudoinverse embeddinghe result would look like a
another. constrained “synthesis” or dynamic montage of these

Another specific example of where adaptation was lessnemories. This implies interesting possibilities for interac-
successful, was for two feature subsets with 40 neurons eactive synthesis of memories.
all other parameters being equal. In this case, the chaos had aFinally, we comment on the implications for memory
much stronger tendency to localize during adaptation, killingsearch by adaptive bifurcation. In memory search by adap-
the fluctuation dynamics needed to drive the progressive adive bifurcation[7,8], a system parameter is driven by exter-
aptation. nal responses: for example, the connectivity paranretam

be driven as

V. DISCUSSION r=N[1—(1—Ng/N)E] @

We have shown that adaptation of chaos by reinforcemen
learning is possible. That is, the chaotic dynamics give
suitable sampling of the pattern space, so that target featur
can be found and moreover there is effective constraining o
the chaos to the subspace of patterns with the target featur

wherer =N is in the chaotic regime so that a memory
pattern receiving a good responge=0 will be stable, but
emories or other states corresponding to reacti®rsl

ill be unstable and result in wandering in memory space.

Itis not easy to give precise rules for what combination of | i allows the search among memories, in which the search

the key parameters, such as number of neurons and mem me depends on thg Iocaliz.a.tion of the chaos on the neigh-
ries, connectivity, feature subset size, tolerance, reim‘orcet-’OrhOOdS of memories receiving good responses. The results

ment constant, and adaptation, will be successful. But this i f this paper show that with additional feedback to the

not a problem only of chaotic systems. The problem of how! resholds of the specific neurons in the feature subsets, the
s network can learn from earlier searches to reduce search time

to optimize and maintain variance is a common difficult. lat hes b training the ch o th b ‘
problem for any system using stochastic search methods fgp 'ater searches by constraining he chaos (o the subspace o

adaptation. However, it is significant to have specific ex-patterns with the target features.
amples that show how adaptation is possible.

An interesting issue in the context of constraining chaos
in a network which at full connectivity has a set of memo- This work has been partially supported by the Grant-in-
ries, is the effect on the chaos of the memories. This is seefid for Scientific Researches from the Ministry of Educa-
here in a tendency to shift toward the memories containingion, Science and Culture of Japan. Part of this work was
the target features observed at larger connectivities. That islone at ATR Optical and Radio Communications Research
for the distribution to shift further than would be expectedLaboratories.
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